首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6033篇
  免费   517篇
  国内免费   2篇
  2023年   35篇
  2022年   27篇
  2021年   173篇
  2020年   79篇
  2019年   98篇
  2018年   140篇
  2017年   122篇
  2016年   195篇
  2015年   352篇
  2014年   327篇
  2013年   429篇
  2012年   549篇
  2011年   505篇
  2010年   322篇
  2009年   246篇
  2008年   383篇
  2007年   355篇
  2006年   323篇
  2005年   313篇
  2004年   284篇
  2003年   255篇
  2002年   273篇
  2001年   48篇
  2000年   44篇
  1999年   53篇
  1998年   60篇
  1997年   49篇
  1996年   21篇
  1995年   45篇
  1994年   36篇
  1993年   36篇
  1992年   41篇
  1991年   20篇
  1990年   30篇
  1989年   27篇
  1988年   18篇
  1987年   15篇
  1986年   13篇
  1985年   23篇
  1984年   17篇
  1983年   17篇
  1982年   27篇
  1981年   15篇
  1980年   12篇
  1979年   11篇
  1978年   7篇
  1976年   15篇
  1975年   7篇
  1973年   7篇
  1972年   6篇
排序方式: 共有6552条查询结果,搜索用时 562 毫秒
991.
With climate change set to increase the frequency and severity of drought in many parts of the world, there is a need to better understand the effects of drying on stream ecosystems. We investigated the long-term effects of drought on two amphipod taxa Paramoera fontana (Pontogeneiidae) and Austrogammarus australis (Paramelitidae) and macroinvertebrate assemblage structure through an analysis of 13 years of data collected from four forested stream reaches (Victoria, Australia). Abundances of A. australis and P. fontana in the lower reach of Lyrebird Creek declined to zero following surficial streambed drying. Similar declines in abundances were not observed in Sassafras Creek or the two headwater springs, which continued to flow throughout the drought. P. fontana was detected again in the lower reach of Lyrebird Creek 12 months after the final cease-to-flow, however A. australis remained undetected 5 years later, despite an upstream source population within 2 km. Both the entire and shredder macroinvertebrate assemblage structure in Sassafras Creek and the lower reach of Lyrebird Creek shifted significantly pre- and post-surficial streambed drying in the lower reach of Lyrebird Creek. Despite signs of recovery following a return to more average flows, assemblage composition remained considerably different. The substantial differences in the recovery of the two species indicates varying resistance and resilience traits. The failure of A. australis to recolonize after 5 years indicates an absence of any significant resistance or resilience traits. In contrast, the rapid re-colonization of P. fontana may indicate poor resistance traits, but strong resilience traits. The sensitivity of A. australis to cease-to-flow events points to the need to carefully manage water extraction to protect this threatened species. The effective management of macroinvertebrate assemblages in the face of drought requires a clear understanding of their response to drying, the conservation of refugia and the minimization of additional stressors which reduce ecosystem resilience.  相似文献   
992.
The Ebola virus protein VP40 is a transformer protein that possesses an extraordinary ability to accomplish multiple functions by transforming into various oligomeric conformations. The disengagement of the C‐terminal domain (CTD) from the N‐terminal domain (NTD) is a crucial step in the conformational transformations of VP40 from the dimeric form to the hexameric form or octameric ring structure. Here, we use various molecular dynamics (MD) simulations to investigate the dynamics of the VP40 protein and the roles of interdomain interactions that are important for the domain–domain association and dissociation, and report on experimental results of the behavior of mutant variants of VP40. The MD studies find that various salt‐bridge interactions modulate the VP40 domain dynamics by providing conformational specificity through interdomain interactions. The MD simulations reveal a novel salt‐bridge between D45‐K326 when the CTD participates in a latch‐like interaction with the NTD. The D45‐K326 salt‐bridge interaction is proposed to help domain–domain association, whereas the E76‐K291 interaction is important for stabilizing the closed‐form structure. The effects of the removal of important VP40 salt‐bridges on plasma membrane (PM) localization, VP40 oligomerization, and virus like particle (VLP) budding assays were investigated experimentally by live cell imaging using an EGFP‐tagged VP40 system. It is found that the mutations K291E and D45K show enhanced PM localization but D45K significantly reduced VLP formation.  相似文献   
993.
It was recently discovered that the NRAS isoform 5 (20 amino acids) is expressed in melanoma and results in a more aggressive cell phenotype. This novel isoform is responsible for increased phosphorylation of downstream targets such as AKT, MEK, and ERK as well as increased cellular proliferation. This structure report describes the NMR solution structure of NRAS isoform 5 to be used as a starting point to understand its biophysical interactions. The isoform is highly flexible in aqueous solution, but forms a helix‐turn‐coil structure in the presence of trifluoroethanol as determined by NMR and CD spectroscopy.  相似文献   
994.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   
995.
Nanotechnology is the creation and use of materials and devices on the same scale as molecules and intracellular structures, typically less than 100?nm in size. It is an emerging science and has made its way into pharmaceuticals to significantly improve the delivery and efficacy of drugs in a number of therapeutic areas, due to development of various nanoparticle-based products. In recent years, there has been increasing evidence that nanotechnology can help to overcome many of the ocular diseases and hence researchers are keenly interested in this science. Nanomedicines offer promise as viable alternatives to conventional drops, gels or ointments to improve drug delivery to the eye. Because of their small size, they are well tolerated, thus preventing washout, increase bioavailability and also help in specific drug delivery. This review describes the application of nanotechnology in the control of human diseases with special emphasis on various eye and ocular surfaces diseases.  相似文献   
996.
997.
998.
999.
The amyloidogenic variant of β2-microglobulin, D76N, can readily convert into genuine fibrils under physiological conditions and primes in vitro the fibrillogenesis of the wild-type β2-microglobulin. By Fourier transformed infrared spectroscopy, we have demonstrated that the amyloid transformation of wild-type β2-microglobulin can be induced by the variant only after its complete fibrillar conversion. Our current findings are consistent with preliminary data in which we have shown a seeding effect of fibrils formed from D76N or the natural truncated form of β2-microglobulin lacking the first six N-terminal residues. Interestingly, the hybrid wild-type/variant fibrillar material acquired a thermodynamic stability similar to that of homogenous D76N β2-microglobulin fibrils and significantly higher than the wild-type homogeneous fibrils prepared at neutral pH in the presence of 20% trifluoroethanol. These results suggest that the surface of D76N β2-microglobulin fibrils can favor the transition of the wild-type protein into an amyloid conformation leading to a rapid integration into fibrils. The chaperone crystallin, which is a mild modulator of the lag phase of the variant fibrillogenesis, potently inhibits fibril elongation of the wild-type even once it is absorbed on D76N β2-microglobulin fibrils.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号